Charon toolkit fcr parallel, implicit structured-grid computations:
Functional design

Rob F. Van der Wijngaart
MRJ Technology Solutions
NASA Ames Research Center
Moflett Field, CA 94035

1 Introduction

In a previous report the design concepts of Charon [5] were presented. Charon is a {oolkit
that aids engineers in developing scientific programs for structured-grid applications to be
run on MIMD parallel computers. It constitutes an augmentation of the general-purpose
MPI-based [4] message-passing layer, and provides the user with a hierarchy of tools for
rapid protolyping and va'idation of paralle] programs, and subsequent piecemeal performance
tuning.

Here we describe the ‘mplementation of the domain decomposition tools used for creating
data distributions across sets of processors. We also present the hierarchy of parallelization
{ools that allows smooth itanslation of legacy code (or a serial design) into a parallel program.
Along with the actual tool descriptions, we will present the considerations that led to the
particular design choices Many of these are motivated by the requirement that Charon must
be useful within the tracitional computational environments of Fortran 77 and C. Only the
Fortran 77 syntax will be presented in this report.

2 A multi-level, orthogonal design

In Charon we distinguish between data distribution support and parallel execution support.
They are orthogonal eleinents of the design space, meaning that high-level data distribution
functions can be applied in conjunction with low-level parallel execution support tools, and
vice versa. Much of {he trouble in the implementation of advanced algorithms on MIMD
message-passing systems. stems [rom the fact that data distribution and concurrent execu-
tion on distributed data siructures cannot be separated. Those systems that do allow the
separation between the two are usually very restricted in both the type of operations and
the type of distributions allowed, as was detailed in [5]. Charon is able to provide virtually
complete freedom in data distribution while still offering powerful support tools for the con-
trol of the program flow, because it treats parallelization as an incremental process, whose
final product must be very efflicient, but whose intermediale stages are allowed to be slow.
The foremost decision, riade by the user, is the choice of the data distribution (possibly dy-
namic). Whereas the lowest level of abstraction in Charon features close integration of data

1

distribution and parallel execution environment, the highest level of abstraction contains
support tools that allow the program to execute correctly on a distributed data set, with
minimal structural and textual changes in the serial program text. This is accomplished as
follows.

All arrays that need to be distributed register with a distribution utility that structures
the local storage space for a segment (or segments) of the the array (see Section 3). All
other variables are global, which means that they exist on all processors, and have the same
value on all. Moreover, all processors execute the same program statements. Whenever
an assignment to an element of a distributed array takes place, the owner-computes rule is
invoked, which means that only one processor performs the actual assignment. Whenever an
assignment requires the value of a distributed array element, a communication takes place
automatically if the element is remote. The mechanism for such flexible assignments, which
makes use of the Charon functions assign, address, and value, is described in Section 4.
Complications may occur, for example when a user {unction is called that takes as input
distributed array elements, and uses their addresses to modify nearby memory locations
without providing explicil information regarding the position of those locations within the
distributed array. In that case more versatile access mechanisms need 1o be applied that
(may) fetch blocks of data, and that regulate execution of functions depending on which
processor owns the data being modilied. For this purpose the Charon funclions invoke
and mvalue are provided. Despite this flexibility, there are still certain program structures
that cannot be expressed using the top-level functions in Charon. Thal is because those
functions rely on alomicity of the owner-computes rule. Atomicity is automatically satisfied
by a single assignment, but can be violated by user-defined or library functions operating on
pointers. Il a [unction modifies multiple distinct distributed arrays, or different parts of the
same distributed array, there can be a conflict about ownership of the data to be modified. It
is the responsibility of the user to resolve such conflicts, or to gnarantee program correctness
implicitly.

3 Distribution support tools

Charon supports the parallelization of programs using multi-dimensional arrays related to
structured grids. The data distribution process consists of three fundamental steps:

1. Define a grid and create a partitioning using Cartesian sections. The result is called a
partition.

2. Assign partitions to processors. The result is called a decomposilion.

3. Create the multi-dimensional, distributed array and associate it with a decomposition.
The result is called a distributed grid variable, or distribution.

Common decompositions, such as uni-partitions or diagonal multi-partitions (see [5, 6]),
can be created with a few high-level decomposition functions. Customizations are performed
using lower-level functions. In the following description of Charon functions, the integer
variables grid, partition, decomposition, and distribution (in typewriter font) are
handles to the corresponding data structures.

create grid, set_grid_size, and set_grid_start are used to define a discretization grid
of a certain dimensionality. to specify the size of the grid in a particular dimension, and to
redefline the starting index of the grid in a specific dimension (default is specified through the
Charon function set_default_offset; see below), respectively. The grid and all subsequent
constiructs based on it are restricted to the processors in the MPT communicator specified in
create grid.

Syntax of Fortran 77 grid creation functions.

subroutine create_grid(grid,communicator,no_dimensions)
integer communicalior, grid, no_dimensions

subroutine set_gr:_d_size(grid,dimension,size)
integer grid, dimension, size

subroutine set_gr:d_start(grid,dimension,start)
integer grid, dimension, start

Create_partition, set no_cuts, set_cut, and set_even_cuts are used to define a par-
tition, to specily the number of cuts in a certain dimension, to (re)define the value of a
particular cut (a value of n means that a separator is placed between points n — 1 and
n), and (o space culs in a certain dimension as evenly as possible, respectively. If no ex-
actly uniform division is possible, set_even_cuts will augment the size of the low numbered
partitions by one unit until the leftover points have been exhausted.

Syntax of Fortran 77 partitioning [unctions:

subroutine create partition(partition,grid)
integer partition, grid

subroutine set_no _cuts(partition,dimension,no_cuts)
integer partition, dimension, no_cuts

subroutine set_cu:(partitio,dimension,cut,value)
integer partition, dimension, cut, value

subroutine set_evean_cuts(partition,dimension)
integer partition, dimension

create_decomposition and set_owner are used to define a decomposition and to (re)set
ownership of a particular partition, respectively. Ownership is signified by the rank of the
processor within the coinmunicator. Because grids can have different dimensionality, the
number of indices needed to identify a partition can vary. It is the user’s responsibility {o
supply the correct numkber.

Syntax of Fortran 77 decomposition functions:

subroutine create_decomposition{(decomposition,partition)
integer decomposition, partition

subroutine set_owner(decomposition,owner_rank,index1,index2,...)
integer decomposition, owner_rank, index2, index?2,

Note that Fortran 77 requires a fixed number of parameters for each function or sub-
routine. The definition of set_owner and several other Charon functions does not conform
{o that standard, which may lead to problems on some computer systems. These can be
resolved by using a Fortran 90 compiler instead, which will automatically insert default
values for the dummy indices that are lelt unspecified. Whereas the set_owner routine suf-
fices to construct any type of decomposition, it is usually preferable to create commonly
used decompositions using a few high-level routines. It is simpler, less error-prone, and also
more efficient; Charon can use optimized interrogation and communication calls when the
decomposition has a known, regular structure. The common decompositions currently sup-
ported by Charon are uni-partitions (each processor is assigned a single partition), diagonal
multi-partitions (each processor is assigned several partitions in a regular pattern [6]), and
High Performance Fortran-style [2] block-cyclic distributions. The predefined decomposi-
tions assume partitioning of the grid in all dimensions. However, particular dimensions can
he excluded by invoking the command exclude partition dimension. In mulli-partition
decompositions at least two grid dimensions must be partitioned. By default, the uni-
partition decomposition minimizes aspect ratios in the partitioned dimensions (for example,
a grid ol 80 x 20 points would be divided in 16 partitions of 10 x 10 points). Customiza-
tion is obtained by specifying the number of processors in each particular grid dimension
(set no_processors). By default, the block-cyclic decomposition uses a cyclic distribu-
tion with a group size of one in all partitioned dimensions. The number of processors to
be applied to each partitioned grid dimension is as close to equal as possible. Different
numbers of processors and different group sizes can be specified using set no_processors
and set_group_size, respectively. In addition, a block decomposition can be specified for
selected dimensions using set_block partition. When a decomposition is construcled us-
ing high-level Charon functions, a partition is created implicitly. The function partition
returns a handle to thal partition.

Syntax of Fortran 77 high-level decomposition [unctions

subroutine create_unipartition(decomposition,grid)

integer decomposition, grid

subroutine create_multipartition(decomposition,grid)
integer decomposition, grid

subroutine create_block_cyclic(decomposition,grid)
integer decomposition, grid

subroutine exclude_partition_dimension(decomposition,dimension)
integer decomposition, dimension

subroutine set_no_processors(decomposition,dimension,no_procs)
integer decomposition, dimension, no_procs)

subroutine set_group_size(decomposition,dimension,size)
integer decomposition, dimension, size)

subroutine set_block_partition(decomposition,dimension)
integer decomposiiion, dimension

integer function partition(decomposition)
integer decomposition

Note that the numbering of all array elements requires the definition of an array oflset. For
Fortran the default offset is 1. For C and C++ it is 0. Consequently, the first grid dimension
has index 1 in Fortran, and index 0 in C. The default offset can be changed by calling
set_default offset(offset).

In addition to creaticn and assignment functions, there also exist destruction and inter-
rogation functions for most of the above constructs. Where applicable, these are defined by
replacing create with delete, or by leaving off set_, respectively. It is never required lo
delete a datla structure when it is no longer needed, but in extreme cases, when many calls
are made to the creation functions, space may become tight.

A quick way lo customize a decomposition is o create one using a predefined high-
level routine, and then modify it. For example, one may want {o use a three-dimensional
diagonal multi-partition scheme, but partitions owned by processor 2 should be transferred
{o processor T:

do kp = 1, no_partitions(decomposition,3)
do jp = 1, no_partitions(decomposition,2)
do ip = 1, no_partitions(decomposition,1)

p = partition_index(decomposition,ip,jp,kp)
if (partition_owner(decomposition,p) .eq. 2) then
call set _partition_owner(decomposition,7,p)
end if
end do
end do
end do

Alternatively, when the particular location of the partition in the decomposition is irrel-
evant, the triple loop can be writlen as a single canonical loop over all partitions in the
decomposition:

do p = 1, total_no_partitions(decomposition)
if (partition_owner(decomposition,p) .eq. 2) then
call set_partition_owner(decomposition,7,p)
end if
end do

Fxecution of commit decomposition is necessary when construction of a decomposition
is finalized. T{ serves to check consistency of the definition of the decomposition and o

(W41

compute some information concerning communication schedules. It is possible to modify
some of the datla structures underlying a decomposition that make the actual decomposition
invalid. For example, if the number of cuts in a certain dimension of the grid is changed. the
partition ownership schedule contained in the decomposition can no longer be valid. In that
case commit_decomposition will fail and a new decomposition must be constructed. If the
decomposition is found to be valid but to not qualify as one of the special predefined types
anymore, the special internal attribule is reset.

Once a decomposition has been formed, distributed variables can be associated with
it. The function create.distribution creates a distribuled array of some elementary
data_type (MPI_integer, MPI REAL, etc), whose storage is reserved al some specilied start_
address. The user also specifies the {ensor rank of the variable, plus an array of numbers of
components for each index of the rank. For example, set{ing rank equal to 2 and components
equal to (3,3) defines a 3 x 3 matrix at each point of the grid. To accommodate stencil
operations the user specifies a positive number of ghost_points. To determine whether
enough space has been allocated for the local portion of the distributed variable, the user
can request the number of units of the elementary data type needed, using storage space.

Syntax of Fortran 77 distribution functlion:

subroutine create_distribution(distribution,decomposition,data_type,
$ start_address,rank,components,ghost_points)
integer distribution, decomposition, data_type, rank,
components(*), ghost_points
<type> start_address(x)

integer function storage_space(decomposition)
integer decomposition

Here <type> refers to a range of memory locations reserved for slorage of elements of type
data_type. By delault, multiple partitions owned by the same processor are stored such that
each partition takes up an equal amount of space. The layout is consistent with a storage
declaration that allocates to each partition a subarray of identical dimensions. This will, in
general, create gaps, which is wasteful. Bul it does allow uniform and simple declaration
of complex distributed variables. Space can be conserved by calling the [unction compact,
which eliminates any gaps, bul necessitates the use of Charon access l[unction offset (see
Section 4} to determine where a particular partition starts in memory. Since every partition
may have different subarray dimensions when compacted, suitable dimensioning statements
may require calls fo partition_size. Complete control over memory allocation is got by
speciflying explicitly where each partition p starts in memory, and what the subarray di-
mensions are. Such specifications, or calls to compact, must be made before any part of
the distributed variable is used, because they affect important Charon functions, such as
address, and value.

Syntax of Fortran 77 layout functions:

subroutine compact(distribution)
integer distribution

subroutine set_ofiset(distribution,location,p)
integer distribution, location, p

subroutine set_array_dimension(distribution,dimensions,p)
integer distribut:on, dimensions(*), p

Finally, we note that all grid, partition, decomposition and distribution creation and
manipulation operations are global, which means that all processors in the corresponding
communicator must call these routines with the same parameters.

4 Execution support tools

At the highest level of abstraction, Charon must present an interface that makes the transi-
tion from a serial to a correct parallel implementation simple and straightforward. The user
need not be concerned about details of the domain decomposition, local and remote data,
concurrency, communication, etc. Fffectively, the top level programming tools support the
Charon data distributions (as do the other levels), but hide the distribution aspects from
the user. This is generaly ineflicient, but that is not a problem. In subsequent refinements
performance improvements can be obtained, again making use of Charon tools.

We note that Charon does not provide an automatic code conversion capability. All
parallelization is carried oul by the user, who retains complete control over data lay-out
and program flow. Hen-e, the necessary code changes must be kept at a minimum. For
that purpose Charon offers execution support tools that simulate a single data space and a
single thread of control. Assignments and conirol structures are exact images of the serial
program, and the resulting code is executed by all processors; Charon simulates a single,
replicated program counter. We use the following rationale for the implementation. Fach
element of a distributec variable has a unique owner processor, so it is most natural—
and often least expensive—to employ an owner-compules rule: whenever an element of a
distributed variable occurs on a lefi-hand side of an assignment, the processor who owns
it is responsible for its evaluation. But since all processors execute the same code within
the same control structure, we have {o provide a mechanism {o skip assignments to nonlocal
memory locations; the replicated program counters ‘pause’ on all processors, except on the
one executing the local assignment, and ‘resume’ collectively immediately therealler. The
obvious way to implement (nested) loops over distributed data structures is as follows:

1. Compute the intersection of the index sets of the loop and of the locally owned part of
the distributed variable(s) on the left hand side of the assignment(s) in the loop body.
This is the executi>n mask.

2. Execute the statements covered by the mask on each processor independently.

This would be the equivalent of a High Performance Fortran FORALL statement [2]. It is
important to recognize that loops cannot be parallelized this way in general. Not only does
it violate the principle ol a simulated single program counter, it also constitutes a reordering
or splitting of the original loop, which cannot be done with impunity in case of recurrences or
other dependencies within the loop body or across iterations. Note also that locally owned
index sets in Charon can be arbitrarily complex, due to the flexibility of the partitioning

mechanism, and can generally not be described explicitly in the same loop structure as that
of the serial program.

We use the following approach instead. Each assignment in the serial program is trans-
lated into a call to an assign routine, which takes as arguments a left hand side (an address)
and a right hand side (a value). If the address is NULL (not reachable), no assignment takes
place, and the statement is eflectively not executed by the calling processor; il is masked.
NULL addresses result from (unintentional) memory errors, and from assignments {o nonlocal
memory locations. The masking is obtained by using the function address, which returns an
actual location for a local element of a distributed variable, and NULL for a nonlocal element.
Masking alone is not sufficient, however, because the right hand side to be evaluated can also
be arbitrarily complex, with possible coniributions from local and remote memories. For this
purpose the funclion value is introduced. It operales on distributed variables and always
returns the proper value, or perhaps a ‘conventional’ segmentation fault in case of a pro-
gramming error. No distinction is made between values returned by the function value and
values of nondistributed variables and constants. All are rvalues in C terminology. Similarly,
no distinction 1s made between addresses returned by the function address, and addresses
of nondistributled variables. Both are lvelues in C terminology. In a correcl program using
only the high-level Charon tools, all rvalues always exist on each node, whereas Ivalues are
only defined if they are local. Alternatively, we may say that the highest level of abstraction
of Charon only implements (implicitly invoked) remote gets, not puts. Implementation of
remote gels does not require one-sided communication, since all processors call all assign
routines and hence can cooperate in the assembly of each value to be assigned. Because
rvalues must always be defined, value causes the processor that owns the particular data
ilem 1o broadcast il to all other processors in the same communicator.

The names of each of the functions assign, value, and address, and many others, can
be changed by the user by editing a dictionary belore installing Charon. This allows for
terser code, at the possible expense of reduced readability.

Syntax of (Fortran 77) global access functions (var constitutes a handle to a distributed
variable):

subroutine assign(my_address,my_value)
<type> my_address, my_value

<type> function value(var,indexl,index2, ...)
integer var, indexl, index2,

<type> function address(var,indexl,index2, ...)
integer var, indexl, index2,

Observations:

¢ Fortran 77 does not make explicit distinction between rvalues and lvalues in declara-
tions, so the definition of assign appears symmetric in its arguments. In Fortran 90.
my-address would be declared with intent(out), and my_value with intent(in).
Also in Fortran 90, my_address can be declared as a symbolic name, or as a pointer
variable. In C or C++, my_address is a pointer and my_value is an actual value.

e The assign operator is overloaded; it can take values and addresses of any elementary
type, as long as they are consistent (that is, value and address must refer to the
same {ype). The user is responsible for the match. Frrors cannot be detected by the
compiler or runtim: system.

e The generic functio value specializes to real value, integer value, logical_value,
double precision.value and character.value, depending on the type of the dis-
iributed variable whose handle (var) it receives. Similar specializations hold for the
generic function address. In addition, value and address allow variable-length pa-
rameter lists in order to accommodate distributed variables of differing dimensions.
Integers index1, index2, ... are global indices with respect to the whole grid. Note
thal the result of the funclion address is used functionally as an Ivalue by Charon,
which is not possible in Fortran.

For the reasons listed abcve, assign, value and address are all implemented in C. However,
they are callable from Fortran. Correciness (i.e. serial consisiency) of a program utilizing
only these routines is easily shown, even though Charon makes no assumptions about lock-
step execution or other synchronization fealures of the runtime system, and does not pose
any restriclions on data dependencies in the program. Fach invocation of assign requires
the cooperation of the processor that owns a referenced remote data element. Because all
processors execute the same code, any update of such referenced remote data occurring
logically before the value is requested must already have taken place before the request is
registered and satisfied; synchronization is performed automatically. This is equivalent to
realigning the replicated Hrogram counter. A side effect of the cooperative nature of implicitly
invoked communications is that they must be issued as broadcast operations. A processor
executing the value lunction must take active part in sending data, but cannol know which
processor is the recipiert until address has been evaluated. Both the address and the
expression involving valie are arguments of the assign routine, and Fortran semantics say
that they may be executed in arbitrary order. Hence, the rvalue may need to be evaluated
before the destination aldress is known, which implies that the rvalue be available to all
processors in the communicator. A broadcast is required. If the lvalue is not a distributed
variable—in other words. if it is a global variable—t{he address routine will not be used.
Global variables are automatically sell-consistent, because each processor assigns the same
(broadcast) value to its local copy’.

The simplest optimization that can be performed is to by-pass execution of assign
statemnents involving rerr ote data elements, so that no broadcasts need to take place. Charon
is notified of this by the bracketing statements begin_local and end_local.

As an example Charon application we transform a serial code fragment that computes a
distributed variable pr c¢n a two-dimensional grid and counts the number of times it drops
below zero.

count = 0
do j =1, nj

Temporary variables insi 1e loops are also global variables, and assignments to them will invoke broadcast
operations if the right hand side expression contains distributed variables.

do i=1, ni

pr(i,j) = a(i,j)**2 - 1.0/b(1,3)
if (pr(i,j) .1t. 0.0) count = count+i
end do
end do

Here is the first parallelized version. Handles to distributed variables are indicated by an
underscore (_) suffix.

count = 0
do j =1, nj
do 1 =1, ni
call assign(address(pr_,i,j),
$ value(a_,1,j)**2 - 1.0/value(b_,1,j))
if (value(pr_,i,j) .1t. 0.0) count = count+l
end do
end do

We use the generic names for the Charon access functions for brevity. Notice that the
structure of the parallel loop nest is identical to that of the original version, and thal we
have not made any assumptions about how the grid has been partitioned. The above loop
nest is completely serialized, with only one processor making assignments to the distributed
variable pr at any one time. Notice also that all processors execute the condilional statement
for every iteration, causing a potentially large number of remote-memoary accesses

In order to improve the performance of this loop while retaining the original structure, we
make use of function point_owner lo test whether a point in the decomposition (signified by
the handle decomp) is assigned to the calling processor (identified by the variable my_rank.
We only execute the loop body if the outcome is true. This means that only one processor
will be incrementing the counter, bul the final tally needs to be known to all processors. Since
we now allow violation of the principle of a single program counter by prescribing different
actions depending on the processor number, Charon can no longer automatically guarantee
correctness of the program and some user intervention becomes necessary in the form ol a
reduction operation. The following version eliminates all extraneous synchronizations and
redundant communications:

counttmp = 0

call begin_local(decomp)
do j =1, nj
do i=1, ni

if (point_owner(decomp,i,j) .eq. my_rank) then
call assign(address_(pr_,i,]j),

$ value(a_,1,j)**2 - 1.0/value(b_,1,j))
if (value(pr_,i,j) .1t. 0.0) counttmp = counttmp+1
end if
end do
end do

10

call end_local(decomp)
call MPI_allreduce(counttmp,count,1,MPI_INTEGER,MPI_SUM,
$ MPI_COMM_WORLD,ierr)

It should be noted {lat this version of the loop nest is still much more expensive than
a hand-coded message-passing version. This is due to the fact that function calls are made
during every iteration. N oreover, all processors do need to perform the ownership test for all
elements of the iteration index space. The next optimization step is obtained by restricting
the iteration index space 1 priori. If we assume that each processor owns exactly one partition
of the grid, the following code results:

counttmp = 0
call begin_local(decomp)
do j = own_low(decomp,2,1), own_high(decomp,2,1)
do i = own_low(decomp,1,1), own_high(decomp,1,1)
call assign(address(pr_,i,j),

$ value(a_,i,j)**2 - 1.0/value(b_,1,3))
if (value(pr_,i,j) .1t. 0.0) counttmp = counttmp+1
end do
end do

call end_local(decomp)
call MPI_allreduce(counttmp,count,1,MPI_INTEGER,MPI_SUM,
$ MPI_COMM_WORLD,ierr)

This code optimization exposes the domain decomposition. If the decomposition had con-
sisted ol an arbitrary nuriber of grid partitions per processor, then the above loop nest would
have changed as follows:

counttmp = 0
call begin_local(decomp)
do p = 1, own_no_partitions(decomp)
do j = own_low(decomp,2,p), own_high{(decomp,2,p)
do i = own _low(decomp,1,p), own_high(decomp,1,p)
call assignaddress(pr_,i,j),

$ value(a_,i,j)**2 - 1.0/value(b_,1,3))
if (value(p-_,1i,j) .1t. 0.0) counttmp = counttmp+1
end do
end do
end do

call end_local(de:zomp)
call MPI_allreducz(counttmp,count,1,MPI_INTEGER,MPI_SUM,
$ MPI_COMM_WORLD,ierr)

Notice that point indexing is still global, i.e. with respect to the global grid. The price
for this convenience is the calls to assign, address and value in the loop body. We now
eliminate these and writ-> the complete final loop as:

11

counttmp = 0
do p = 1, own_no_partitions(decomp)
do j = 1, own_partition_size(decomp,2,p)
do i = 1, own_partition_size(decomp,1,p)
pr{i,j,p) = a(i,j,p)**2 - 1.0/v(i,j,p))
if (pr(i,j,p) .1t. 0.0) counttmp = counttmp+1

end do
end do
end do
call MPI_allreduce(counttmp,count,1,MPI_INTEGER,MPI_SUM,
$ MPI_COMM_WORLD,ierr)

Now there is no need anymore to place calls to the begin/end 1ocal pair, because there
are no more calls to the value routine. We have finally oblained a code {ragment that is
as eflicient as a hand-coded message-passing version. It is also almost as complicaled as
a message-passing code, so it would appear that nothing has been gained. However, the
important difference with other systems is that this optimized code may be freely combined
with high-level unoptimized code fragments—even within the same subroutine—that do not
contain any references to the domain decomposition. Tt is the programmer’s responsibility
to provide the proper declarations and dimension statements for the distributed variables.
In the above example arrays pr, a, and b were declared using three indices. But it would
have been equally legal to wrile the loop over the partlitions owned by the calling processor
as follows (assuming compact storage of the distributed arrays):

counttmp = 0

do p = 1, own_no_partitions(decomp)
si_pr = offset(pr_,p)
si_a = offset{(a_ ,p)

si_b = offset(b_ ,p)
ni_p = own_partition_size(decomp,1,p)
nj_p own_partition_size(decomp,2,p)
call sub_loop(pr(si_pr),a(si_a),b(si_b),ni_p,nj_p,counttmp)
end do
call MPI_allreduce(counttmp,count,1,MPI_INTEGER,MPI_SUM,
$ MPI_COMM_WORLD,ierr)

subroutine sub_loop(pr,a,b,ni,nj,counttmp)
integer ni, nj, 1, j, counttmp

real pr(0:ni+1,0:nj+1), a(ni,nj), b(ni,nj)
do j =1, nj

do i=1, ni
pr{i,j) = a(i,j)**2 - 1.0/b(1,3))
if (pr(i,j) .1t. 0.0) counttmp = counttmp+1
end do
end do

12

return
end

Here we have assumed that arrays a and b are defined without any ghost points. while pr has
a border of size 1. The Charon functions local partition_size and start_index are used
to interrogate the layouts of the decomposition and the distributed arrays, respectively. For
complete portability we inay use the interrogation [unction no_ghost_points(var_handle)
to avoid implicit assumptions about ghost points.

The above code fragment loops over the locally owned partitions in the canonical fashion,
i.e. in the order in which Charon numbers the partitions internally. If a particular order of
visits by sub_loop were raquired, for example because synchronizations need to be performed
after each layer of partitions in the j-direction has been completed, we can use additional
interrogation functions. We also make use of the function own_partition_index, which
returns for a particular partition its sequence number on the calling processor if it 1s owned
by that processor, or -1 otherwise.

counttmp = 0
do jp = 1, no_partitions(decomp,2)
do ip = 1, no_partitions(decomp,1)
p = own_partition_index(decomp,ip,jp)
if (p .ge. 0) then
si_pr = offset(pr_,p)
si_a = offset(a_ ,p)

si_b = offset(b_ ,p)
ni_p = own.partition_size(decomp,1,p)
nj.p = own partition_size(decomp,2,p)
call sub_loop(pr(si_pr),a(si_a),b(si_b),ni_p,nj_p,counttmp)
end if
end do
call MPI_barrie-(MPI_COMM_WORLD,ierr)
end do
call MPI_allreduce(counttmp,count,1,MPI_INTEGER,MPI_SUM,
$ MPI_COMM_WORLD,ierr)

We now move to the more complex example of operations on arrays of matrix variables
involving recurrences. The serial code represents the forward-elimination phase of a set of
independent block-iridiagonal linear equations. Each of the diagonals low, main, and up
consists of (4 x 4)-blocks. The right hand side vector r, which will be overwritten by the
solution, consists of (4 x |)-blocks. The recurrence is in the i-direction

do j =1, nj
do i=1, ni-1
call invert_overwrite(up(1,1,1,j),main(1,1,i,3j))
call vinvert_overwrite(r(1,i,j),main(1,1,1,3))
call multiply add(main(1,1,i+1,j),low(1,1,i+1,3),up(1,1,1,3))

13

call vmultiply_add(r(1,i+1,j),low(1,1,i+1,5),r(1,1,3))
end do
end do

subroutine invert_overwrite(matil,mat2)

real mat1(4,4), mat2(4,4), temp(4,4), pivot
! code that overwrites matl by mat2"{-1}*matl
pivot = 1.0/mat1(1,1)

return
end

subroutine vinvert_overwrite(vec,mat)

real vec(4), mat(4,4), temp(4,4), pivot
! code that overwrites vec by mat2”{-1}*vec
pivot = 1.0/mat(1,1)

return
end

subroutine multiply_add(matl,mat2,mat3)

real mat1(4,4), mat2(4,4), mat3(4,4)

integer n, m, k

! code that overwrites matl by matl-mat2*mat3

do n=1, 4
do m=1, 4

do k 1, 4
mati(n,m) = mati(n,m)-mat2(n,k)*mat3(k,m)
end do
end do
end do
return

end

subroutine vmultiply_add(vecl,mat,vec2)

real vecl(4), vec2(4), mat(4,4)

integer n, k

! code that overwrites vecl by vecl-mat#*vec2

do n=1, 4
do k=1, 4
veci(n) = vecl(n)-mat(n,k)*vec2(k)
end do
end do
return

14

end

The difficulty with this code fragment is thal the statements that do the actual work are
in subroutines that have no knowledge of the overall partitioned grid. They operate on
addresses and neighboring memory locations that are passed through parameter lists. Hence,
the strategy of translating every assignment into a call to the Charon assign subroutine
does not work. The solution is to demand that (v)invert_overwrite and (v)multiply.add
execute atomically, which means that there must be a single, known address that acts as the
start of a region of lvalues on the same processor. No other values may be modified within the
same subroutine. There nay be several contiguous regions of rvalues, whose sizes must also
be known at run time. We now translate the above calling program; (v)invert_overwrite
and (v)multiply_add remain unchanged.

do j =1, nj
do i=1, ni-1
call invoke(invert_overwrite,address(up_,1,1,i,j),1,

$ mvalue(16,main_,1,1,1i,j))
call invoke(vinvert_overwrite,address(r_,1,1i,j),1,
$ mvalue(16,main_,1,1,1,3))
call invoke(mnltiply_add,address(main_,1,1,i+1,j),2,
$ mvalue(16,low_,1,1,i+1,j),mvalue(16,up_,1,1,1,3))
call invoke(vnultiply_add,address(r_,1,i+1,j),2,
$ mvalue(16,low_,1,1,i+1,j) ,mvalue(4,r_,1,1,3))
end do
end do

Syntax of Fortran 77 bulk access funciions:

subroutine invoke [subf,my_address,no_inbufs,my_valuesl,my_values2,...)
external subf

integer no_inbufs

<type> my_address{*), my_valuesi(*), my_values2(x),

<type> function mvalue(n,var,indexl,index2,index3,....)
integer n, var, indexl, index2, index3,

The general-purpose routine invoke examines the argument my_address and determines
which processor is respcnsible for the execution of subroutine subf, based on the owner-
computes rule. All other processors will skip the invocation of subf, but they will cooperate
in providing rvalues, as needed, through communications. Again, atomicity is assumed, i.e.
the processor that owns the first element of the distributed variable in the mvalue argument
list is also responsible for supplying subsequent elements. If the first element is local, the
action of mvalue is similar to that of value. If remote, a broadcast operation requesting
n data elements is initiated. Upon completion, the function mvalue points {o the start of
a buffer region conlainiig the requested values. The actual number of bytes transferred
depends on the specific Jala type <type> of the distributed variable. The subroutine subf
is defined by the user. It is invoked by Charon as follows:

call subf(my_address,my_valuesl,my_values2,...)

Fortran does not provide information about the number of actual parameters with which a
subroutine is called, so the user must indicate to subroutine invoke the number of separate
regions of input values through the parameter no_inbufs. If the user-defined subroutine
also takes constants or non-distributed variables as arguments, a slight complication arises,
because Fortran does not distinguish between scalar and array arguments of subroutines.
It does not allow the type of overloading through argument checking that C++ does. In
Fortran all arguments get translated into addresses, that are then passed to the subroutine.
If the argument is an expression, it gets evaluated and the address of the resull is passed to
the subroutine (cf. value). But invoke expects for each argument not scalars, bul pointers
to arrays. To coerce invoke’s arguments into this behavior without using mvalue, which
is reserved for distributed arrays, use the function gvalue. gvalue applies to both global
scalars and global arrays.

Notice again that in the translated code fragment no influence of the domain decomposi-
tion is visible. The situation changes when we start to optimize the code. First assume thal
the grid is partitioned in a stripwise [ashion, such that all points on a grid line of constant j
are within the same partition. The block-tridiagonal systems can be solved independently by
all processors, without any communication. Hence, the first optimization is again oblained
by using the begin/end local pair. Skipping a few steps, we easily arrive al the following
efficient code:

do j =1, own_partition_size(decomp,2,1)
do 1 =1, ni-1
call invert_overwrite(up(l,1,1i,j),main(1,1,1,3))
call vinvert_overwrite(r(1,i,j),main(1,1,i,3))
call multiply_add(main(1,1,i+1,3),low(1,1,i+1,5),up(1,1,i,j))
call vmultiply_add(r(1,i+1,j),low(1,1,i+1,5),r(1,1,3))
end do
end do

The problem becomes more inleresting when the grid is partitioned differently, for example
because there are other conflicting recurrences in the program. Assume again that each
processor owns one partition, but {his {ime the partition does not stretch the whole width
of the grid. We first force the solution algorithm to proceed along stripwise sections of the
grid, but retain the convenience of the implicitly invoked remote gets.

do ip = 1, no_partitions(decomp,1)
do jp = 1, no_partitions(decomp,2)
p = partition_index(decomp,ip,jp)
do j = low(decomp,2,p), high(decomp,2,p)
do i = low(decomp,1,p), min(ni-1,high(decomp,1,p))
call invoke(invert_overwrite,address(up_,1,1,1i,3),1,

$ mvalue(16,main_,1,1,1,j))
call invoke(vinvert_overwrite,address(r_,1,1i,j),1,
$ mvalue(16,main_,1,1,1,j))

16

call invoke(multiply_add,address(main_,1,1,i+1,j),2,

$ mvalue(16,low_,1,1,i+1,3) ,mvalue(16,up_,1,1,1,3))
call invoke(vmultiply_add,address(r_,1,i+1,3),2,
$ mvalue(16,low_,1,1,i+1,j),mvalue(4,r_,1,1,3))
end do
end do
end do
end do

Observe that the original loop has been reordered, but that the recurrence relation is re-
spected. Nexi, the need for [requent communications must be eliminated. Since the recur-
rence relation has a dep h of only one, a border of ghost points of size one suffices for the
distributed arrays. Copying ghost point values from neighboring partitions is accomplished
by using function copy_faces.

Before the loop is entered, all ghost point values are initialized. During the execution of
the loop nest a complication arises, because the set of four bulk assignment stalements in
the loop body straddles the boundaries of partitions. Whenever the assignments ‘spill over’
into the next partition, it would be preferable Lo write ghost point values, rather than move
partition ownership to another processor to do the spilled-over assignment. The mechanism
for causing this to happen is the bracketing pair begin/end ghost_access(p), which forces
ghost point values of parlition p to be written, instead of values of points properly contained
in other partitions (provided the ghost points exist). In addition, ghost point values are
read, instead ol requeste | through a communication or a local memory copy, again provided
the ghost poinis exist. It is as if temporarily the partition owned by the calling processor
has been enlarged by tte ghost points As before, exactly one processor is responsible for
performing the computetion of each distributed array element, regardless of whether the
begin/end ghost_access calls are placed. After all ghost points have been written for a
whole strip of partitions. the values are transferred in bulk to the neighboring processors by
calling the function copy.ghost_faces.

Syntax of Fortran 77 face copy {unctions:

subroutine copy_faces(var,periodicity,thickness,dimension,cut ,subset)
integer var, peris>dicity, thickness, dimension, cut, subset (2, *)

subroutine copy_gnost_faces(var,periodicity,thickness,dimension,
cut,subset)
integer var, perisdicity, thickness, dimension, cut, subset (2, *)

subroutine copy_faces_all(var,periodicity,thickness, stencil_shape)
integer var, periodicity, thickness, stencil_shape

subroutine copy_ghost_faces_all(var,periodicity,thickness,stencil_shape)
integer var, periodicity, thickness, stencil_shape

Copy_faces copies values from the outermost ‘layers’ of partitions to the corresponding ghost
points of adjacent partit ons. thickness refers to the number of layers to be copied (smaller

17

than or equal to the total thickness of the borders). If thickness is ALL, all layers are copied.
If dimension equals p, copying takes place to neighboring partitions in the p** coordinate
direction, where p can be positive or negative. Il copying is required in a single dimension
but in both directions, write p+ALL. The parameter cut specifies the sequence number of the
cut in the coordinate direction defined by dimension across which the copy operation is to
take place. Setting cut equal to ALL selects all cuts simultaneously. If the copy operation is
PERIODIC, the sequence number of the cut may be zero, or one more than the actual number
of cuts present (in Fortran, where the default array starting index is 1). Either case will
be interpreted as a periodic copy. If the operation is NONPERIODIC, such cuts are ignored.
Additionally, we may restrict the copying to a subset of a particular face, indicated by the
{wo-dimensional array subset. It lists, for each coordinate direction other than that normal
to the face to be copied, the sltart and end coordinates of the points of the subset with respect
to the global grid. Alternatively, use ALL for the starting index if all points along the cut
are to be copied.

Often it will be useful to copy face values at all cuts in all dimensions and directions,
especially in the case of explicit methods, where all off-processor information can be fetched
beforehand. For this purpose the variation copy faces all is provided. It takes as an
argument the stencil shape, which can have the values BOX or STAR (see [1]). The STAR shape
ignores diagonal values and only copies between strongly connected partitions. BOX, which
also copies values to weakly connected partitions, will result in a staged copying of data
to reduce latency. Figure 1 shows several different applications of the copy_faces[.all]
routines.

Copy_ghost_faces accomplishes the same as copy_faces, bul copies values [rom ghost
points {o points properly owned by neighboring partitions.

Notice that both types of copy funclions are data-parallel. All processors participate, in
principle, but only operate on the data that they own (if a processor is responsible for neither
sending nor receiving, il can safely skip the copy call). In fact, the result of copy operations
1s independent of the number of processors involved, but depends only on the number and
lay-out of the partitions. This is true for all Charon operations defined so far; distributed
programs can be simulated, tested and debugged, to a large extent, while using only a single
processor. One may even use Charon exclusively to obtain blocked uniprocessor code that
optimizes data localily. Hence, the following program will run correctly on any number of
processors.

call copy_faces(r_,NONPERIODIC,1,-1,ALL,ALL)
call copy_faces(low_,NONPERIODIC,1,-1,ALL,ALL)
call copy_faces(main_,NONPERIODIC,1,-1,ALL,ALL)
do ip = 1, no_partitions(decomp,1)
do jp = 1, no_partitions(decomp,2)
p = partition_index(decomp,ip,jp)
call begin_ghost_access(decomp,p)
do j = low(decomp,2,p), high(decomp,2,p)
do i = low(decomp,1,p), min(ni-1,high(decomp,1,p))
call invoke(invert_overwrite,address(up_,1,1,1i,j),1,
$ mvalue(16,main_,1,1,1,3))

18

a. partitioned grid b. distributed array, shaded ghost
points (exploded view)

a a a b b ccc
8 aaa bbb ccc
7 a aa bbb ccc
6 aaa bbb ccc
5
4
; ddd e e e Frrf
1 ddd e e e f£f
ddd eee ff£f
1234567859 ddd eee £fff
c. Copy_faces_all, nonperiodic, d. Copy_faces_all, periodic+1,
box—shaped star—shaped
aaalb abbblc bfccec c[a a aljb a[b b b]Jc blc c cla
aaalb abbbl|c bjlccc cla aalb alb b b|c bjc ccja
aaalb abbblec bjccec cla a ajfb a|b b bjc blc c cla
aaalb abbbl|c bjccc cla a alb alb b bjc bjc c cla
ddde deeef ef I ddd e e e B
aaab abbbc bccece aaa bbb c ccC
dd dle deeel|f eft £ £ d dle dfe e elf eff £ f]d
dddle deeeif elf f £ fld d dle dle e e|f e|lf £ £id
dddje deecel|f elf £ ¢ fld d dle dlee elf elf £ fid
dddje deece|f elfff fild d dle dlee e|f e f f f|d
e. Copy_faces periodic+2, all cuts, f. Copy_faces, nonperiodic, cut=2,
dimension=-1 dimension=1+all, subset=(3,5)
ddd e e e £ ff
a aa bbb c Cc C aaa bbb ccCccC
aaa bbb ccc aaa bbb ccec
aaa bbb ccc a aa bbb ccc
aaa bbb ccc aaa b b b|c bjc cc
aaa bbb cccC
ddd e e e Frt ddd e e el|f e rf
ddd eee f £ f ddd eeelf elf £ f
ddd e e e f ££f ddd e e e £ ff
ddd eee f£ff ddad eee £ff

Figure 1: Applications of copy faces and copy_faces_all to a distributed array.

call invoke(vinvert_overwrite,address(r_,1,1i,j),1,
mvalue(16,main_,1,1,1i,j))
call invoke(multiply_add,address(main_,1,1,i+1,3),2,
mvalue(16,low_,1,1,i+1,3) ,mvalue(16,up_,1,1,1,3))
call invoke(vmultiply_add,address(r_,1,i+1,j),2,
mvalue(16,low_,1,1,i+1,j),mvalue(4,r_,1,1,3))
end do
end do
call end_ghos:_access(decomp,p)
end do
call copy_ghost. faces(main_,NONPERIODIC,1,1,ip,ALL)
call copy_ghost_faces(r_,NONPERIODIC,i,l,ip,ALL)

19

end do

The above loop structure no longer requires the implicitly invoked communications. Con-
sequently, we can relax the principle of the simulated single program counter and let each
processor execute only its own part of the loop. But a poor load balance obtains, because
only those processors who own partitions in the same strip of the grid can be active at the
same time:

call copy.faces(r_,NONPERIODIC,1,-1,ALL,ALL)
call copy_faces(low_,NONPERIODIC,1,-1,ALL,ALL)
call copy_faces(main_,NONPERIODIC,1,-1,ALL,ALL)
call begin_local(decomp)
do ip = 1, no_partitions(decomp,1)
do jp = 1, no_partitions(decomp,2)
p = partition_index(decomp,ip,jp)
if (partition_owner(decomp,p) .eq. my_rank) then
call begin_ghost_access(decomp,p)
do j = low(decomp,2,p), high(decomp,2,p)
do i = low(decomp,1,p), min(ni-1,high(decomp,1,p))
call invoke(invert_overwrite,address(up_,1,1,i,j),1,

$ mvalue(16,main_,1,1,i,3))
call invoke(vinvert_overwrite,address(r_,1,i,j),1,
$ mvalue(16,main_,1,1,i,3))
call invoke(multiply_add,address(main_,1,1,i+1,j),2,
$ mvalue(16,low_,1,1,i+1,j) ,mvalue(16,up_,1,1,1,j))
call invoke(vmultiply_add,address(r_,1,i+1,3j),2,
$ mvalue(16,low_,1,1,i+1,j) ,mvalue(4,r_,1,1,j))
end do
end do
call end_ghost_access(decomp,p)
end if
end do

call copy_ghost_faces(main_,NONPERIODIC,1,1,ip,ALL)
call copy_ghost_faces(r_,NONPERIODIC,1,1,ip,ALL)
end do
call end_local(decomp)

4.1 Multi-partition version of tri-diagonal solver

The load balance of the above loop nest can be improved by selecting another domain
decomposition. If each processor receives not one but several partitions of the grid, arranged
according to the diagonal multi-partition scheme [5, 6], the loop automatically becomes load
balanced. Eliminating the invoke references, we obtain the final version of the code:

call copy_faces(r_,NONPERIODIC,1,-1,ALL,ALL)
call copy_faces(low_,NONPERIODIC,1,-1,ALL,ALL)

20

call copy_faces(main_,NONPERIODIC,l,—1,ALL,ALL)
do ip = 1, no_rartitions(decomp,1)
do jp = 1, nc_partitions(decomp,2)
p = own_partition_index(decomp,ip,jp)
if (p .gt. 0) then
do j =1, own_partition_size(decomp,2,p)
ihigh = own_partition_size(decomp,1,p)
if (ip .ec. no_partitions(decomp,1)) ihigh = ihigh-1
do i =1, ihigh
call invert_overwrite(up(1,1,1i,j,p),main(1,1,i,3,p))
call virvert_overwrite(r(1,i,j,p),main(1,1,1,3,p))
call multiply_add(main(1,1,i+1,3,p),low(1,1,i+1,5,p),

$ up(1,1,1,j,p))
call vmltiply_add(r(1,i+1,j,p),low(1,1,1+1,5,p),r(1,1,3,p))
end do
end do
end if
end do

call copy_ghost_faces(main_,NONPERIODIC,1,1,ip,ALL)
call copy_ghost_faces(r_,NONPERIODIC,1,1,ip,ALL)
end do

4.2 Pipelined uni-partition version of tri-diagonal solver

If multi-partitioning is not feasible, performance of the loop nest can still be improved by
pipelining the uni-partit on solver. We will assume for simplicity that the number of grid
points in the j-direction is divided evenly among the processors, and that the size of each
partition in the j-direction is divisible by the pipeline grouping factor npipe. Otherwise,
some preconditioning would be necessary.

call copy_faces(r",NDNPERIODIC,1,-1,ALL,ALL)
call copy_faces(low_,NONPERIODIC,1,—1,ALL,ALL)
call copy_faces(muin_,NONPERIDDIC,i,-1,ALL,ALL)
call begin_local(decomp)
do ip = 1, no_partitions(decomp,1)
do jp = 1, no_partitions(decomp,2)
p = partition _index(decomp,ip,jp)
no_stages = (high(decomp,2,p)-low(decomp,2,p)+1)/npipe
do stage = 1, no_stages
subset(1,1) = low(decomp,2,p)+(stage-1)*npipe
subset(2,1) = subset(1,1)-1+npipe
if (partition_owner(decomp,p) .eq. my_rank) then
call begin_ghost_access(decomp,p)
do j = subset(1,1), subset(2,1)
do i = low(decomp,1,p), min(ni-1,high(decomp,1,p))
call invoke(invert_overwrite,address(up_,1,1,1,j),1,

21

$ mvalue(16,main_,1,1,1,3))
call invoke(vinvert_overwrite,address(r_,1,i,j),1,

$ mvalue(16,main_,1,1,1,3))
call invoke(multiply_add,address(main_,1,1,i+1,j),2,
$ mvalue(16,low_,1,1,i+1,3) ,mvalue(16,up_,1,1,1,3))
call invoke(vmultiply_add,address(r_,1,i+1,j),2,
$ mvalue(16,low_,1,1,i+1,j) ,mvalue(4,r_,1,i,3))
end do
end do
call end_ghost_access(decomp,p)
end if

call copy_ghost_faces(main_,NONPERIODIC,1,1,ip,subset)
call copy_ghost_faces(r_,NONPERIODIC,1,1,ip,subset)
end do
end do
end do
call end_local (decomp)

The above loop deviates from what would usually be obtained by programming a pipelined
equation solver from scratch. Most significantly, there is only one copy of the main loop body;
no special cases have to be distinguished for processors at the begin or end of the pipeline.
Moreover, synchronization appears in a natural place, namely after the program text that
linishes a stage of the pipeline. This is a [ringe benefit of the coding style encouraged by
Charon. The user is led to approach the numerical problem at hand from the perspective of
the overall data space and instruction stream, not just from the subset owned by each indi-
vidual processor. Equally important is the Charon concept of data-parallel communications.
All processors call each communication routine, in principle, but action and/or synchroniza-
tion is required only by those processors that own or need the data that is communicated.

Finally, we reverl o accessing the distributed-array elements directly. This eliminates
the overhead of the many function calls to invoke, address, and mvalue. In addition, we
rearrange the order in which the partitions are visited. Pipelining inhibits copying interface
data along entire cuts, and copying only a few numbers at a time can lead to a significant
overhead if all processors must execute each instance of copy _ghost_faces. So instead, we
write the loop nest as a setl ol independent pipelines, one for each strip of partitions in the
i-direction. To accomplish this we make use of the function own_partition_coordinate,
which returns for the p* partition owned by the calling processor the partition index in
a specified coordinate direction (i.e. the sequence number of the strip of partitions). The
copy operation after completion of each pipeline segment will finish correctly and without
deadlock, because all processors that are involved in the communication are in the same
strip, and hence call the copy routine.

call copy_faces(r_,NONPERIODIC,1,-1,ALL,ALL)
call copy_faces(low_,NONPERIODIC,1,-1,ALL,ALL)
call copy_faces(main_,NONPERIODIC,1,-1,ALL,ALL)
do jp = 1, no_partitions(decomp,2)

22

if (own_partition_coordinate(decomp,1,2) .eq. jp) then
do ip = 1, no_partitions(decomp,1)
p = partition_index(decomp,ip,jp)
no_stages = (high(decomp,2,p)-low(decomp,2,p)+1)/npipe
do stage = 1, no_stages
subset(1,) = low(decomp,2,p)+(stage-1)*npipe
subset(2,1) = subset(1,1)-1+npipe
if (partit:ion_owner(decomp,p) .eq. my_rank) then
do] 1+(stage-1)*npipe, stage*npipe
ihigh = partition_size(decomp,1,p)
if (ip .eq. no_partitions(decomp,1)) ihigh = ihigh-1
do i =1, ihigh
cal.. invert_overwrite(up(1,1,i,j),main(1,1,1i,j))
call. vinvert_overwrite(r(1,1i,j),main(1,1,1,3))
cal. multiply_add(main(1,1,i+1,j),low(1,1,i+1,3),up(1,1,1,3))
call vmultiply_add(r(1,i+1,j),low(1,1,i+1,3),r(1,1,3))
end do
end do
end if
call copy.ghost_faces(main_,NONPERIODIC,1,1,ip,subset)
call copy.ghost_faces(r_,NONPERIODIC,1,1,ip,subset)
end do
end do
end 1if
end do

4.3 Additional solver optimizations

Although the final multi- partition and pipelined uni-partition codes are quite efficient, there
are some other optimizations that users might consider. First, there is no strict necessity to
use ghost points for this application. They are used to salisly the remote data requirements
of the solver implicitly by duplicating such data in the location where they are expected by
the calling processor. But explicit message passing could also have been used (the lowest level
of abstraction in Charonj, in which send and receive buffers are managed by the user. Buffer
data can then be integrited in the compulation directly as it arrives, without first being
stored in the ghost point locations. This is not necessarily faster {han using ghost points, but
it saves space. Second, a ~ertain overhead is incurred by letting processors perform a loop over
partitions they do not own, instead of focusing on those they do own. Since no computational
work is done on nonlocal partitions, this overhead is small, except in the case of extremely
fine partitioning. Then the multi-partition method can be further improved by computing in
advance which partition in each strip of partitions is owned by the calling processor Third,
il explicit message passing were used, some message aggregation would be possible by fusing
co-located calls 1o the capy routlines. Because Charon provides the mechanism to construct
coarse-grained parallel programs with relative ease, latency reduction through such fusings
is generally minimal. Ttese optimizations should only be considered if absolutely required,

23

since they increase the programming complexity significantly.

A potentially more useful optimization is obtained by using asynchronous communication
calls icopy_faces, icopy faces_all, etc. Such calls return immedialely without blocking
on the sending or receiving side. A copy_wait call must be issued at the point in the program
where the expected data is actually used.

4.4 Data redistribution

Certain applications feature a succession of different and very strong data dependencies
during the course of the computation. Such programs may benefil from a dynamic redis-
tribution of part of their data to reduce the frequency of remote-memory accesses. This is
accomplished by the routine redistribute. In most cases redistribution results in a global
exchange of data, which is an expensive operation that should be applied with care. If pos-
sible, the asynchronous version iredistribute should be used. The routine assumes that
both the source and the destination distributed variables have been predefined. Obviously,
redistribution can only take place between distributed variables of the same tensor rank and
vector dimensions, defined on the same grid. Increased efliciency is obtained for variables
that are also based on the same partition, since this reduces the fragmentation of the packets
ol data to be communicated between processors. Il space for the two distributions (partially)
coincides, Charon treats the redistribution as an in silu operation, which is usually more
expensive than in the case of spatially disjoint copies.
Syntax of Fortran 77 redistribution function:

subroutine redistribute(to_var,from_var)
integer to_var, from_var

5 Charon utilities

The previous sections described the basic Charon functions that can be used to write parallel
programs in a piecemeal fashion. However, for the conversion of legacy codes some more
ulilities are needed. Common practice in the writing of scienlific computing codes includes
overindexing, and the introduction of lower-dimensional array segments. Overindexing is
especially useful on vector computers, where it serves to increase the vector length of inner
loops. Lower-dimensional array segments are used as scratch space, or {o provide a convenient,
local reference to a higher-dimensional array. We will show how to implement these three
techniques using Charon.

5.1 Specialized and generalized distributions

Lower-dimensional segments of distributed arrays are called slices. They are defined using
{he command create_slice. Since they use the same space as the arrays from which they
are ‘carved’, no poinlers to memory locations are necessary. The syntax of the command is
as follows:

subroutine create_slice(var_slice,var,no_dims,indices)
integer var_slice, var, no_dims, indices(x)

94

The parameter no_dims ndicates that dimensions 1 through no.dims of the original dis-
tributed array (signified by var) are retained. The array indices contains an ordered list
of dropped—and hence constant—indices of the parent array. If the parameter var_slice
refers to an existing, valid slice, that old slice definition is deleted and overwritten by the new
one. This is consistent with the programming practice of sweeping over higher-dimensional
arrays in a slicewise fash on. Depending on the size and the number of operations on the
slice, calls to create_slice may represent a significant overhead. Higher efliciency can be
achieved by creating and storing the slices only once in a preprocessing step. All operations
on partitions (other thar. those that change the layout) can also be applied to slices. A
slice will generally consist of a number of segments of partitions contained in the parent dis-
tributed array. These segments inheril their local sequence number from the corresponding
partition.

Arrays of lower dimension than that of the grid that are used as scratch space are defined
using a generalization of the create_distribution routine. This results, as in the case of
create_slice, in the creation of a distribution.

subroutine create_generalized_distribution(var,decomposition,data_type,
start_address,rank,components,ghost_points, index,
leading_position)
integer var, decomposition, data_type, rank, components(*), ghost_points,
$ index(*), leading_position
<type> start_address(*)

$
$

The value of index (i) ir dicates which index of the subarray corresponds to grid dimension
i. If the value is negalive. say -p, then that grid dimension is excluded from the generalized
distribution, and its index is fixed at p. create generalized distribution can also be
used o create plain distributions by setting index(i) equal to i for all dimensions of the
grid. Permutations of grid indices are obtained by making index a proper permutation of
the grid dimensions. Firally, the user can choose the relative positions of grid and tensor
indices. By setiing the parameter leading position to TENSOR—the default for the stan-
dard create_distribution routine—the tensor indices are the fastest varying components
of the distributed variable (in Fortran). Choosing GRID makes the grid indices vary fastest.

The technique of overindexing is the most complicated to accommodalte, because it relies
heavily on the implicitly defined storage format of Fortran arrays. It can also be relatively
expensive when applied carelessly to loops that run over multiple partitions, and should
generally be avoided in parallel programs. Bul since it is widely practiced in traditional
scientific computing, some support for it must be provided. The Charon answer is to fuse
a number (no_dims) of array indices of a distribution, thus creating an alias for the original
distribution. The result again obeys all the rules for distributions.

subroutine create. fused_distribution(var_alias,var,no_dims)
integer var_alias, var, no_dims

As an example, if two dimensions (the first two) of a four-dimensional distributed array
are fused, the variable is henceforth indexed using only three indices. Nole that contiguous
array elements in the seial code may not be contiguous anymore in the distributed array,

even when they are within the same partition, due o the existence of ghost points. The
Charon functions value and address will take proper care of this, and the results will be as
expected, as if there were no ghost points. But the step from the high-level Charon code to
the lower-level concurrent code with direct array access may no longer be as straightforward
as before.

5.2 lIrregular remote data requests

So far we have only discussed the facilitation of regular remote array accesses through the
Charon copy_faces routines. But sometimes it is necessary to make reference to remote data
in an arbitrary pattern. For this purpose Charon provides a device called copy_tile, which
places in the memory of particular processors a copy of a Cartesian subset of a distributed
variable.

subroutine copy_tile(var,comm,start_address,subset)
integer var, comm, subset(2,*)
<type> start_address(x)

As all Charon communication routines, copy_tileis called by all processors in the communi-
cator for which the distributed variable is defined. If the calling processor is a member of com-
municator comm, then a copy of the Cartesian subset defined by [T/, [subsel(1,1), subset(2,1)]
is placed in a buffer at start_address. An asynchronous, nonblocking version is also avail-
able under the name of icopy_tile.

There are certain similarities between copy_tile and the remote dala requests in the
Global Arrays package [3], as both mechanisms allow subsets of global data 1o be gathered.
However, in the case of Global Arrays, such subsets are restricted to two-dimensional subsets
of matrices, whereas in Charon subsets of arbitrary dimension are allowed. Another difference
is that in Charon copying is a collective operation, and no explicit synchronization is required,
except in the case of asynchronous transfers. By contrast, Global Arrays uses one-sided
communication, which always requires synchronization.

5.3 Parallel 1/O

Using the newly defined parallel I/O subset of MPI 2 [7], distributed variables can be written
to a file in a single step, as was demonstrated in the multi-partition parallel flow solver

RANS-MP [6]. Syntax: To be determined.

6 Conclusions

A practical design for a system to accommodate piecemeal conversion of serial legacy codes
or designs to efficient distributed-memory message-passing programs has been presented.
Although Charon targels complicated structured-grid applications, its principle extends to
other areas as well. What is required is a set of [unctions that gives the user global access to
elements of distributed data structures, in the vein of the Charon structured-grid functions
value and address, supplemented with a set of functions to create and manipulate such
data structures. The latter, as well as suitable data-parallel communication functions, are
likely to be specific to the application area.

26

Whereas Charon does not itsell comprise an automatic parallelization facility, il is ame-

nable {o the use of such tools. In principle, all the user need do is determine the distributions

of large arrays. Using these as inpufs, it can be inferred automatically where and how to
place calls to assign, invoke, address, value, and mvalue. Subsequent tuning is then
carried out by the prograinmer.

Finally, we summarize the features that distinguish Charon from systems that are based

exclusively on (semi-)automatic program translation. Charon:

gives the user comgplete control over data distribution, including advanced schedules
such as multi-partitioning.

gives the user comglete control over memory usage and data layout within each pro-
cessor, including coincident arrays and hand-tuned padding.

gives the user complete control over granularity of the program through the flexible
communication specification mechanisms of copy faces/tile.

allows redistribution of distributed arrays.

allows easy incremental program change; no new analysis is needed when modules or
statements are added, and previous tunings are never losl.

poses no restriclions on programming model; although the Charon tools [acilitate
SPMD-style programming, use of different communicators provides the flexibility to
create different confexis, and message-passing calls can always be used to support true

MIMD programs.

The disadvantage of this flexibility is thal hand-coding is involved, and that some knowledge
of the program structure and data dependencies is required.

References

(1] S. Balay, W.D. Gropp, L. Curfman McInnes, B.F. Smith, Efficient management of

parallelism in objeci-oriented numerical software libraries, Modern Software Tools in
Scientific Computingz, E. Arge, A.M. Bruaset, H.P. Langtangen, Ed.. Birkhauser Press,
1997

C. Koelbel, D. Loveman, R. Schreiber, G. Steele, M. Zosel, The High Performance
Fortran Handbook, MIT Press, Cambridge, MA, 1994

J. Nieplocha, R.J. Harrison, R.J. Littlefield, The global array programming model for
high performance scienlific compuling, SIAM News, Vol. 28, No. 7, August-September
1995

M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra, MPI: The Complete
Reference, MIT Press, 1995.

R.F. Van der Wijngaart, Charon toolkit for parallel, implicil structured-grid compula-
tions: Literature survey and conceplual design, NAS Report xxx, NASA Ames Research

Center, Moflett Field, CA, 1997

27

[6] R.F. Van der Wijngaart, M. Yarrow, M.H. Smith, An architecture-independent paral-
lel implicit flow solver with efficient /0, Proc. Fighth SIAM Conference on Parallel
Processing for Scientific Computing, Minneapolis, MN, March 1997

[7] MPI Forum, MPI-2: Ezlensions to the Message-Passing Interface,
URL: “htl,p://www.mcs.anl.gov/Projects/mpi/mpi2/mpi2—report/mpi‘Z-report‘.htm]”

28

